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Abstract

Almost all of the most successful quantum algorithms dis-
covered to date exploit the ability of the Fourier transform
to recover subgroup structure of functions, especially peri-
odicity. The fact that Fourier transforms can also be used
to capture shift structure has received far less attention in
the context of quantum computation.

In this paper, we present three examples of “unknown
shift” problems that can be solved efficiently on a quantum
computer using the quantum Fourier transform. We also
define the hidden coset problem, which generalizes the hidden
This
framework provides a unified way of viewing the ability of the

shift problem and the hidden subgroup problem.
Fourier transform to capture subgroup and shift structure.

1 Introduction

The first problem to demonstrate a superpolynomial
separation between random and quantum polynomial
time was the Recursive Fourier Sampling problem [6].
Exponential separations were subsequently discovered
by Simon [32], who gave an oracle problem, and by
Shor [31], who found polynomial time quantum algo-
rithms for factoring and discrete log. We now under-
stand that the natural generalization of Simon’s prob-
lem and the factoring and discrete log problems is
the hidden subgroup problem (HSP), and that when
the underlying group is Abelian and finitely gener-
ated, we can solve the HSP efficiently on a quan-
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tum computer. While recent results have continued to
study important generalizations of the HSP (for exam-
ple, [17, 23, 19, 34, 25, 22]), only the Recursive Fourier
Sampling problem remains outside the HSP framework.

In this paper, we give quantum algorithms for
several hidden shift problems. In a hidden shift problem
we are given two functions f, g such that there is a shift
s for which f(z) = g(x+s) for all z. The problem is then
to find s. We show how to solve this problem for several
classes of functions, but perhaps the most interesting
example is the shifted Legendre symbol problem, where
g is the Legendre symbol' with respect to a prime size
finite field, and the problem is then: “Given the function
flz) = (“”Tfs) as an oracle, find s”.

The oracle problem our algorithms solve can be
viewed as the problem of predicting a pseudo-random
function f. Such tasks play an important role in cryp-
tography and have been studied extensively under var-
ious assumptions about how one is allowed to query
the function (nonadaptive versus adaptive, determin-
istic versus randomized, et cetera) [7, 29]. In this paper
we consider the case where the function is queried in
a quantum mechanical superposition of different values
x. We show that if f(z) is an s-shifted multiplicative
character x(x + s), then a polynomial-time quantum al-
gorithm making such queries can determine the hidden
shift s, breaking the pseudo-randomness of f. We con-
jecture that classically the shifted Legendre symbol is
a pseudo-random function, that is, it is impossible to
efficiently predict the value of the function after a poly-
nomial number of queries if one is only allowed a classi-
cal algorithm with oracle access to f. Partial evidence
for this conjecture has been given by Damgard [15] who
proposed the related task: “Given a part of the Legen-

dre sequence (ﬁ), (Szl), o (%), where ¢ is O(logp),

P
predict the next value (5*;‘#)”, as a hard problem with
applications in cryptography.

Using the quantum algorithms presented in this pa-
per, we can break certain algebraically homomorphic

TThe Legendre symbol (%) is defined to be 0 if p divides z, 1
if x is a quadratic residue mod p and —1 if z is not a quadratic
residue mod p.



cryptosystems by a reduction to the shifted Legendre
symbol problem. The best known classical algorithm [9]
for breaking these cryptosystems is subexponential and
is based on a smoothness assumption. These cryptosys-
tems can also be broken by Shor’s algorithm for period
finding, but the two attacks on the cryptosystems ap-
pear to use completely different ideas.

While current quantum algorithms solve problems
based on an underlying group and the Fourier trans-
form over that group, we initiate the study of problems
where there is an underlying ring or field. The Fourier
transform over the additive group of the ring is defined
using the characters of the additive group, the addi-
tive characters of the ring. Similarly, the multiplicative
group of units induces multiplicative characters of the
ring. The interplay between additive and multiplicative
characters is well understood [28, 33], and we show that
this connection can be exploited in quantum algorithms.
In particular, we put a multiplicative character into the
phase of the registers and compute the Fourier trans-
form over the additive group. The resulting phases are
the inner products between the multiplicative charac-
ter and each of the additive characters, a Gauss sum.
We hope the new tools presented here will lead to other
quantum algorithms.

We give algorithms for three types of hidden shift
problems:

In the first problem, g is a multiplicative character
of a finite field. Given f, a shifted version of g, the
shift is uniquely determined from f and g. An example
of a multiplicative character of Z/pZ is the Legendre
symbol. Our algorithm uses the Fourier transform over
the additive group of a finite field.

In the second problem, g is a multiplicative charac-
ter of the ring Z/nZ. This problem has the feature that
the shift is not uniquely determined by f and g and our
algorithm identifies all possible shifts. An example of a
multiplicative character of Z/nZ is the Jacobi symbol?.

In the third problem we have the same setup as in
the second problem with the additional twist that n is
unknown.

We also define the hidden coset problem, which is
a generalization of the hidden shift problem and the
hidden subgroup problem. This definition provides a
unified way of viewing the quantum Fourier transform’s
ability to capture subgroup and shift structure.

Some of our hidden shift problems can be reduced
to the HSP, although efficient algorithms for these HSP
instances are not known. Assuming Conjecture 2.1
from [9], the shifted Legendre symbol problem over

2The Jacobi symbol (%) is defined so that it satisfies the

relation (ﬁ) = (%) (%) and reduces to the Legendre symbol when

the lower parameter is prime.

Z/pZ can be reduced to an instance of the HSP over
the dihedral group D, = Z/pZ x Z/2Z in the following

way. Let f(z,0) = ((%)7 (w%),...,(”%g)) and f(x,1) =

((%), (”+;+1), A (m+;+£)), where s is unknown and
¢ > 2log?p. Then the hidden subgroup is H =

{(0,0),(s,1)}. This conjecture is necessary to ensure
that f will be distinct on distinct cosets of H. For
the general shifted multiplicative character problem, the
analogous reduction to the HSP may fail because f
may not be distinct on distinct cosets. However, we
can efficiently generate random coset states, that is,
superpositions of the form |z,0) + |z + s,1), although
it is unknown how to use these to efficiently find s [16].
The issue of nondistinctness on cosets in the HSP has
been studied for some groups [8, 21, 20, 18].

The existence of a time efficient quantum algorithm
for the shifted Legendre symbol problem was posed as
an open question in [12]. The Fourier transform over
the additive group of a finite field was independently
proposed for the solution of a different problem in [4].
The current paper subsumes [13] and [24]. Building
on the ideas in this paper, a quantum algorithm for
estimating Gauss sums is described in [14].

This paper is organized as follows. Section 2
contains some definitions and facts. In Section 3, we
give some intuition for the ideas behind the algorithms.
In Section 4, we present an algorithm for the shifted
multiplicative problem over finite fields, of which the
shifted Legendre symbol problem is a special case, and
show how we can use this algorithm to break certain
algebraically homomorphic cryptosystems. In Section 5,
we extend our algorithm to the shifted multiplicative
problem over rings Z/nZ. This has the feature that
unlike in the case of the finite field, the possible shifts
may not be unique. We then show that this algorithm
can be extended to the situation where n is unknown.
In Section 6, we show that all these problems lie within
the general framework of the hidden coset problem.
We give an efficient algorithm for the hidden coset
problem provided g satisfies certain conditions. We also
show how our algorithm can be interpreted as solving a
deconvolution problem using Fourier transforms.

2 Background

2.1 Notation and Conventions We use the follow-
ing notation: w,, is the nth root of unity exp(2wi/n),
and f denotes the Fourier transform of the function f.
An algorithm computing in F, Z/nZ or G runs in poly-
nomial time if it runs in time polynomial in log g, logn
or log|G].

In a ring Z/nZ or a field F,, additive characters
Y (Z/nZ — C* or F;, — C*) are characters of the



additive group, that is, ¥(x + y) = ¢¥(z)¥(y), and
multiplicative characters x ((Z/nZ)* — C* or F; — C*)
are characters of the multiplicative group of units, that
is, x(zy) = x(x)x(y) for all x and y. We extend the
definition of a multiplicative character to the entire ring
or field by assigning the value zero to elements outside
the unit group. All nonzero x(x) values have unit norm
and so x(x7!) = x(x).

We ignore the normalization term in front of a
superposition unless we need to explicitly calculate the
probability of measuring a particular value.

2.2 Computing Superpositions We will need to
compute the superposition ) f(x)|z) where f(x) is in
the amplitude.

LEMMA 2.1. (COMPUTING SUPERPOSITIONS) Let f :
G — C be a compler-valued function defined on the
set G such that f(x) has unit magnitude whenever
f(xz) is nonzero. Then there is an efficient algorithm
for creating the superposition ) f(x)|x) with success
probability equal to the fraction of x such that f(x) is
nonzero and that uses only two queries to the function

f.

Proof. Start with the superposition over all z, Y |z).
Compute f(z) into the second register and measure
to see whether f(z) is nonzero. This succeeds with
probability equal to the fraction of = such that f(x)
is nonzero. Then we are left with a superposition over
all z such that f(z) is nonzero. Compute the phase of
f(z) into the phase of |x). This phase computation can
be approximated arbitrarily closely by approximating
the phase of f(z) to the nearest 2"th root of unity for
sufficiently large n. Use a second query to f to reversibly
uncompute the f(x) from the second register.

2.3 Approximate Fourier Sampling It is not
known how to efficiently compute the quantum Fourier
transform over Z/nZ exactly. However, efficient approx-
imations are known [26, 27, 11, 21]. We can even com-
pute an efficient approximation to the distribution in-
duced when n is unknown as long as we have an upper
bound on n [21]. We will need to approximately Fourier
sample to solve the unknown n case of the shifted char-
acter problem in Section 5.2.

To Fourier sample a state |¢), we form the state |})
that is the result of repeating |¢) many times. We then
Fourier sample from |¢) and use continued fractions to
reduce the expanded range of values. This expansion
into |q5> allows us to perform the Fourier sampling step
over a length from which we can exactly Fourier sample.

More formally, let |¢) = ZZ;S ¢z|z) be an arbitrary
superposition, and ZA)W be the distribution induced by

Fourier sampling |¢) over Z,. Let the superposition
) = Z;n:_ol @z mod n|T) be |¢) repeated until some
arbitrary integer m, not necessarily a multiple of n. Let
D,;, be the distribution induced by Fourier sampling
|¢) over Z, rather than Z,, (where ¢ > m and ¢, = 0
if z > m). Notice that D,,, is a distribution on Z, and
ZA)M is a distribution on Z,.

We can now define the two distributions we will

compare. Let 75‘“;) be the distribution induced on the

reduced fractions of D,,,, that is, if z is a sample from
D, , we return the fraction z/n in lowest terms. In
particular, define D (4,k) = D, (jm) if mk = n.

)
Let D‘c;) be the distribution induced on fractions from

sampling D,;, to obtain z, and then using continued

fractions to compute the closest approximation to x/q
2

Q(%) and

with denominator at most n. If m =

q=Q(™), then |DIF — DF|; <.
2.4 Finite Fields The elements of a finite field F,
(where ¢ = p" for some prime p) can be represented
as polynomials in F,[X] modulo a degree r irreducible
polynomial in F,[X]. In this representation, addition,
subtraction, multiplication and division can all be per-
formed in O((log ¢)?) time [2].

We will need to compute the Fourier transform over
the additive group of a finite field, which is isomorphic

to (Z/pZ)". The additive characters are of the form
by(z) = wp™™ | where Tr : F, — F, is the trace of
the finite field Tr(x) = Z;;(l) zP , and y € F, [28]. We
can efficiently compute the Fourier transform over the

additive group of a finite field.

LEMMA 2.2. (FOURIER TRANSFORM OVER F,) The

. 1 Tr(zy)
Fourier transform |x) %Eyqu wp “y) can be
approzimated to within error € in time polynomial in

log g and log1/e.

Proof. See [13]. (Independently, the efficiency of this
transform was also shown in [4].)

For clarity of exposition we assume throughout the
rest of the paper that this Fourier transform can be
performed exactly, as we can make the errors due
to the approximation exponentially small with only
polynomial overhead.

2.5 Multiplicative Characters and their Fourier
Transforms The multiplicative group Fj of a finite
field Fy is cyclic. Let g be a generator of Fy. Then
the multiplicative characters of F, are of the form
x(g") = wht, for all £ € {0,...,q — 2} where the
q — 1 different multiplicative characters are indexed by



k €{0,...,q—2}. The trivial character is the character
with & = 0. We can extend the definition of x to
F, by defining x(0) = 0. On a quantum computer
we can efficiently compute x(z) because the value is
determined by the discrete logarithm logg(ac)7 which can
be computed efficiently using Shor’s algorithm [31]. The
Fourier transform of a multiplicative character y of the
finite field I, is given by x(y) = x(y)x(1) [28, 33].

Let n = p{"* ... p."* be the prime factorization of n.
Then by the Chinese Remainder Theorem, (Z/nZ)* =
(Z/p"Z)* x --- x (Z/py*Z)*. Every multiplicative
character y of Z/nZ can be written as the product
x(x) = x1(z1) ... xx(zk), where y; is a multiplicative
character of Z/p"Z and x; = z mod p;**. We say x
is completely nontrivial if each of the y; is nontrivial.
We extend the definition of x to all of Z/nZ by defining
x(y) = 0 if ged(y,n) # 1. The character x is aperiodic
on {0,...,n — 1} if and only if all its x; factors are
aperiodic over their respective domains {0, ...,p;"* —1}.
We call x a primitive character if it is completely
nontrivial and aperiodic. Hence, x is primitive if and
only if all its y; terms are primitive.

It is well known that the Fourier transform of a
primitive y is ¥(y) = x(y)x(1). If x is completely
nontrivial but periodic with period ¢, then its Fourier
transform obeys x(yn/f) = x'(y)¥'(1), where x' is
the primitive character obtained by restricting x to
{0,...,£ — 1}. See the book by Tolimieri et al. for
details [33].

3 The Intuition Behind the Algorithms for the
Hidden Shift Problem

We give some intuition for the ideas behind our algo-
rithms for the hidden shift problem. We use the shifted
Legendre symbol problem as our running example, but
the approach works more generally. In the shifted Leg-
endre symbol problem we are given a function f : Z, —

{0, £1} such that f(z) = (QJZS), and are asked to find

s. The Legendre symbol (;) : F, — {0,£1} is the
quadratic multiplicative character of IF), defined: (%) is
1 if x is a square modulo p, —1 if it is not a square, and
0if x =0.

The algorithm starts by putting the function value
in the phase to get [fs) = 30, fs(x)[z) = 3, (*5°)|z).
Assume the functions f, are mutually (near) orthog-
onal for different z, so that the inner product (f.|fs)
approximates the delta function value d,(z). Using this
assumption, define the (near) unitary matrix C, where
the zth row is | f,). Our quantum state | f,) is one of the
rows, hence C|fs) = |s). The problem then reduces to:
how do we efficiently implement C'? By definition, C is
a circulant matrix (¢zy = cg41,y+1). Since the Fourier

transform matrix diagonalizes a circulant matrix, we
can write C = F(F1CF)F! = FDF!, where D
is diagonal. Thus we can implement C' if we can imple-
ment D. The vector on the diagonal of D is the vector
Ffo)y = F13, (%)\x), the inverse Fourier trans-
form of the Legendre symbol. The Legendre symbol is
an eigenvector of the Fourier transform, so the diago-
nal matrix contains the values of the Legendre symbol
times a global constant that can be ignored. Because
the Legendre symbol can be computed efficiently clas-
sically, it can be computed into the phase, so C' can be
implemented efficiently.

In summary, to implement C for the hidden shift
problem for the Legendre symbol, compute the Fourier
transform, compute (%) into the phase at |z), and
then compute the Fourier transform again (it is not
important whether we use F or F~1).

Figure 1 shows a circuit diagram outlining the
algorithm for the hidden shift problem in general.
Contrast this with the circuit for the hidden subgroup
problem shown in Figure 2.

4 Shifted Multiplicative Characters of Finite
Fields

In this section we show how to solve the hidden shift
problem for any nontrivial multiplicative character of a
finite field. The Fourier transform we use is the Fourier
transform over the additive group of the finite field.

DEFINITION 4.1. (SHIFTED MULTIPLICATIVE CHAR-
ACTER PROBLEM OVER FINITE FIELDS) Given a non-
trivial multiplicative character x of a finite field F,
(where ¢ = p" for some prime p), and a function f
for which there is an s such that f(x) = x(x+s) for all
x. Find s.

ALGORITHM 4.1. (SHIFTED MULTIPLICATIVE CHAR-
ACTER PROBLEM OVER FINITE FIELDS)

L. Create }_,cp X( + 5)[).

2. Compute the Fourier transform to obtain

Tr(—sy)
S per, wr VR W)).

3. For all y # 0, compute x(y) into the phase to obtain
~ Tr(—s
) Ty wp ™~ y)-

aq

4. Compute the inverse Fourier transform and mea-
sure the outcome —s.

THEOREM 4.1. For any finite field and any nontrivial
multiplicative character, Algorithm 4.1 solves the shifted
multiplicative character problem over finite fields with
probability (1 —1/q)?.



|z) = f(z)|z) F

)
1]
Kﬁ

|z) — g7 (2)|z) F measure

Figure 1: Circuit for hidden shift problem. Notice how we compute f and g~

L into the phase.

10) F

measure

kﬁ
[T

) = |2)]f(2))

Figure 2: Circuit for hidden subgroup problem. Here f is computed into a register.

Proof. 1. Since x(x) = 0 only at = 0, by Lemma 2.1
we can create the superposition with probability

1-1/q.

2. By Lemma 2.2 we can compute the Fourier trans-
form efficiently. The Fourier transform moves the
shift s into the phase as described.

3. Because x(y) = x(y)x(1) for every nonzero y, the
phase change |y) — x(y)|y) establishes the required
transformation.

4. The amplitude of | — s) is
L Sy b e = L F 1
= ,/%, so the probability of measuring —s is
1-1/q.

4.1 Example: The Legendre Symbol and Ho-
momorphic Encryption The Legendre symbol (5) :
F, — {0,£1} is a quadratic multiplicative character of
F,, defined: (%) is +1 if x is a square modulo p, —1 if it
is not a square, and 0 if x = 0. The quantum algorithm
of the previous section showed us how we can deter-
mine the shift s € [}, given the function fi(z) = (*1°).
We now show how this algorithm enables us to break
schemes for ‘algebraically homomorphic encryption’.

A cryptosystem is algebraically homomorphic if
given the encryption of two plaintexts F(x), E(y)
with z,y € F,, an untrusted party can construct the
encryption of the plaintexts F(x + y) and E(zy) in
polynomial-time. More formally, we have the secret

encryption and decryption functions £ : F, — §

and D : § — F,, in combination with the public
add and multiplication transformations A : S? — S
and M : S? — S such that D(A(E(z),E(y))) =
z +y and D(M(E(z),E(y))) = =y for all z,y €
F,. We assume that the functions E, D, A and M
are deterministic. The decryption function may be
many-to-one. As a result the encryption of a given
number can vary depending on how the number is
constructed. For example, A(E(4), E(2)) may not be
equal to M(F(2),E(3)). In addition to the public A
and M functions, we also assume the existence of a zero-
tester Z : S — {0,1}, with Z(E(x)) =0 if x = 0, and
Z(E(z)) = 1 otherwise.

An algebraically homomorphic cryptosystem is a
cryptographic primitive that enables two players to per-
form noninteractive secure function evaluation. It is
an open problem whether or not such a cryptosys-
tem can be constructed. We say we can break such
a cryptosystem if, given FE(s), we can recover s in
time polylog(p) with the help of the public functions
A, M and Z. The best known classical attack, due
to Boneh and Lipton [9], has expected running time
(0] (exp (c\/logplog logp)) for the field F), and is based
on a smoothness assumption.

Suppose we are given the ciphertext E(s). Test
E(s) using the Z function. If s is not zero, create the
encryption E(1) via the identity P~1 = 1 mod p, which
holds for all nonzero x. In particular, using E(s) and the
M function, we can use repeated squaring and compute
E(s)P~t = E(1) in logp steps.

Clearly, from E(1) and the A function we can
construct E(z) for every z € F,,. Then, given such an



E(z), we can compute f(x) = (ITfS) in the following
way. Add E(s) and E(z), yielding E(xz + s), and
then compute the encrypted (p — 1)/2th power? of
x + s, giving B((*£*)). Next, add E(0), E(-1) or
E(1) and test if it is an encryption of zero, and
return 0, 1 or —1 accordingly. Applying this method
on a superposition of |z) states, we can create (after
reversibly uncomputing the garbage of the algorithm)
the state ﬁ Y. fs(z)]z). We can then recover s by

using Algorithm 4.1.

COROLLARY 4.1. Given an efficient test to decide if a
value is an encryption of zero, Algorithm 4.1 can be
used to break any algebraically homomorphic encryption
system.

We can also break algebraically homomorphic cryp-
tosystems using Shor’s discrete log algorithm as fol-
lows. Suppose g is a generator for F, and that we are
given the unknown ciphertext E(g®). Create the super-
position Y=, ; |4, j, E(¢**7)) and then append the state

[Vsivi) =D 4 (QM;JH) [t) to the superposition in 4,j by
the procedure described above. Next, uncompute the
value E(g**7), which gives 3=, ; |, ) [tbsit ;). Rewrit-
ing this as >, . |i,r — si)|¢,) and observing that the
1, are almost drthogonal, we see that we can apply the
methods used in Shor’s discrete log algorithm to recover

s and thus ¢°.

5 Shifted Multiplicative Characters of Finite
Rings

In this section we show how to solve the shifted multi-
plicative character problem for Z/nZ for any completely
nontrivial multiplicative character of the ring Z/nZ and
extend this to the case when n is unknown. Unlike in
the case for finite fields, the characters may be peri-
odic. Thus the shift may not be unique. The Fourier
transform is now the familiar Fourier transform over the
additive group Z/nZ.

5.1 Shifted Multiplicative Characters of Z/nZ
for Known n

DEFINITION 5.1. (SHIFTED MULTIPLICATIVE CHAR-
ACTER PROBLEM OVER Z/nZ) Given x, a completely
nontrivial multiplicative character of Z/nZ, and a func-
tion f for which there is an s such that f(x) = x(x+s)
for all . Find all t satisfying f(xz) = x(x+1t) for all x.

Multiplicative characters of Z/nZ may be periodic, so
to solve the shifted multiplicative character problem we
first find the period and then we find the shift. If the

3The Legendre symbol satisfies (%) =g(P-1)/2,

period is £ then the possible shifts will be {s,s+ ¢, s+
20,...}.

ALGORITHM 5.1. (SHIFTED MULTIPLICATIVE CHAR-
ACTER PROBLEM OVER Z/nZ)

1. Find the period £ of x. Let x’ be x restricted to
{0,...,0—1}.

(a) Create ") x(x + 8)|z).
(b) Compute the Fourier transform over Z/nZ to
obtain Y70~ ¢ w, X (y)lyn/0).

(c) Measure |yn/f).
ged(n, yn/L).

Compute n/l =

2. Find s using the period £ and x':

(a) Create >, —0 X' (z + 8)|x).

(b) Compute the Fourier transform over Z/{Z to
obtain >, w, X' (y)|y).

(¢) For all y coprime to £, X'(y)
to obtain }° o/ 0wy YY)

(d) Compute the inverse Fourier transform and
measure.

L into the phase

THEOREM 5.1. Algorithm 5.1 solves the shifted multi-
plicative character problem over Z/nZ for completely
nontrivial multiplicative characters of Z/nZ in poly-
nomial time with probability at least (¢p(n)/n)® =

Q((log llogn)3)'

Proof. Note: because x is completely nontrivial, x’ is a
primitive character of Z/¢Z.

1. (a) x(xz + s) is nonzero exactly when ged(z +
s,m) = 1 so by Lemma 2.1 we can create the
superposition with probability ¢(n)/n.

(b)

Since x has period ¢, the Fourier transform is
nonzero only on multiples of n/¢.

Since X'(y) = x'(y)x'(1), and x'(y) is nonzero
precisely when ged(y,n) = 1, when we mea-
sure yn /¢ we have n/l = ged(n,yn/L).

Similar to the argument above, we can create
the superposition with probability ¢(¢)/¢.

The Fourier transform moves the shift s into
the phase.

As in the case for the finite field, this can be
done by computing the phase of x’(y) into the
phase of |y).



(d) Let A = {y € Z/NZ : X'(y) # 0}
A = (Z/tZ)* so |A] = ¢{). Then
the amplitude of | — s) after the Fourier

11 —ys ys\ _

At (Sveaviel) =

[0}
[

transform is

1 1 _
—\/tﬁ(@W (ZyEA 1) = . So the proba-

bility of measuring | — s) is ¢(¢)/£.

Thus the algorithm succeeds with probability

(p(n)/n)(0(0)/0)®> > (#(n)/n)®, which in turn is
lower bounded by Q((m)g’).

5.2 Shifted Multiplicative Characters of Z/nZ
for Unknown n We now consider the case when n is
unknown.

DEFINITION 5.2. (SHIFTED MULTIPLICATIVE CHAR-
ACTER PROBLEM OVER Z/nZ WITH UNKNOWN n)
Given a completely nontrivial multiplicative character
X : Z/nZ — C, for some unknown n, there is an s such
that f(z) = x(x + 8) for all x. Find all t satisfying
f(x) = x(x+1t) for all x.

THEOREM 5.2. Given a lower bound on the size of the
period of f, we can efficiently solve the shifted multi-
plicative character problem over Z/nZ for unknown n
on a quantum computer.

Proof. Let £ be the period of f and x’ be x restricted to
Z/¢Z. Using the Fourier sampling algorithm described
in Section 2.3, we can approximately Fourier sample
f over Z/¢Z. Because x'(y) is nonzero precisely when
ged(y, £) = 1, this Fourier sampling algorithm returns
y/¢ with high probability, where y is coprime to /.
Thus we can find ¢ with high probability. Next, apply
Algorithm 5.1 to find s mod ¢.

6 The Hidden Coset Problem

In this section we define the hidden coset problem and
give an algorithm for solving the problem for Abelian
groups under certain conditions. The algorithm con-
sists of two parts, identifying the hidden subgroup and
finding a coset representative. Finding a coset repre-
sentative can be interpreted as solving a deconvolution
problem.

The algorithms for hidden shift problems and hid-
den subgroup problems can be viewed as exploiting dif-
ferent facets of the power of the quantum Fourier trans-
form. After computing a Fourier transform, the sub-
group structure is captured in the magnitude whereas
the shift structure is captured in the phase. In the
hidden subgroup problem we measure after computing
the Fourier transform and so discard information about

shifts. Our algorithms for hidden shift problems do ad-
ditional processing to take advantage of the information
encoded in the phase. Thus the solution to the hidden
coset problem requires fully utilizing the abilities of the
Fourier transform.

DEFINITION 6.1. (HIDDEN COSET PROBLEM) Given
functions f and g defined on a group G such that for
some s € G, f(x) =g(x+s) for all z in G, find the set
of all t satisfying f(x) = glx +t) for all z in G. f is
given as an oracle, and g is known but not necessarily
efficiently computable.

LEMMA 6.1. The answer to the hidden coset problem is
a coset of some subgroup H of G, and g is constant on
cosets of H.

Proof. Let S={te€ G: f(z) = g(x +t) for all x € G}
be the set of all solutions and let H be the largest
subgroup of G such that g is constant on cosets of H.
Clearly this is well defined (note H may be the trivial
subgroup as in the Shifted Legendre Symbol Problem).
Suppose t1,t5 are in S. Then we have g(z+(—ta+t1)) =
g((x—t2)+t1) = f(z—t2) = g((x—t2)+12) = g(x) for all
xin G, so —ty 4+t is in H. This shows S is a contained
in a coset of H. Since s is in S we must have that S is
contained in s+ H. Conversely, suppose s+ h is in s+ H
(where hisin H). Then g(x+s+h) = g(x+s) = f(z) for
all x in G, hence s+ h isin S. It follows that S = s+ H.
While this proof was written with additive notation, it
carries through if the group is nonabelian.

6.1 Identifying the Hidden Subgroup We start
by finding the subgroup H. We give two different
algorithms for determining H, the “standard” algorithm
for the hidden subgroup problem, and the algorithm we
used in Section 5.

In the standard algorithm for the hidden subgroup
problem we form a superposition over all inputs, com-
pute g(z) into a register, measure the function value,
compute the Fourier transform and then sample. The
standard algorithm may fail when ¢ is not distinct on
different cosets of H. In such cases, we need other re-
strictions on ¢ to be able to find the hidden subgroup
H using the standard algorithm. Boneh and Lipton [§],
Mosca and Ekert [30], and Hales and Hallgren [21] have
all given criteria under which the standard hidden sub-
group algorithm outputs H even when g is not distinct
on different cosets of H.

In Section 5 we used a different algorithm to deter-
mine H because the function we were considering did
not satisfy the conditions mentioned above. In this al-
gorithm we compute the value of g into the amplitude,
Fourier transform and then sample, whereas in the stan-
dard hidden subgroup algorithm we compute the value



of g into a register. In general, this algorithm works
when the fraction of values for which § is zero is suffi-
ciently small and the nonzero values of § have constant
magnitude.

6.2 Finding a Coset Representative as a De-
convolution Problem Once we have identified H, we
can find a coset representative by solving the associated
hidden coset problem for f’ and ¢’ where f’ and ¢’ are
defined on the quotient group G/H and are consistent
in the natural way with f and g. For notational con-
venience we assume that f and g are defined on G and
that H is trivial, that is, the shift is uniquely defined.

The hidden shift problem may be interpreted as a
deconvolution problem. In a deconvolution problem, we
are given functions g and f = gxh (the convolution of g
with some unknown function k) and asked to find this h.
Let §,(z) = 0(z—y) be the delta function centered at y.
In the hidden shift problem, f is the convolution of §_;
and g, that is, f = g+ d_s. Finding s, or equivalently
finding §_4, given f and g, is therefore a deconvolution
problem.

Recall that under the Fourier transform convolution
becomes pointwise multiplication. Thus, taking Fourier
transforms, we have f = g- 5_s and hence §_, =
g1 f provided ¢ is everywhere nonzero. For the
multiplication by §=! to be performed efficiently on a
quantum computer would require § to have constant
magnitude and be everywhere nonzero. However, even
if only a fraction of the values of § are zero we can still
approximate division of ¢ by only dividing when § is
nonzero and doing nothing otherwise. The zeros of §
correspond to loss of information about §_,.

ALGORITHM 6.1.

1. Create ) . g(x + s)|z).

2. Compute the Fourier transform to obtain

ZyeGdzy(s)g(wyﬂy), where 1, are the char-
acters of the group G.

3. For all v, for which §(¢,) is nonzero com-
pute §(¢,)”' into the phase to obtain

Zy,g(wy);éo Uy(s)|y).

4. Compute the inverse Fourier transform and mea-
sure to obtain —s.

THEOREM 6.1. Suppose f and g are efficiently com-
putable, the magnitude of f(x) is constant for all values
of © in G for which f(x) is nonzero, and the magnitude
of §(1y) is constant for all values of 1, in G for which
§(y) is nonzero. Let a be the fraction of x in G for
which f(z) is nonzero and 3 be the fraction of 1y in G

for which G(vp,) is nonzero. Then the above algorithm
outputs —s with probability a3.

Proof. 1. By Lemma 2.1 we can create the superposi-
tion with probability a.

2. The Fourier transform moves the shift s into the
phase.

3. Because g has constant magnitude, for values where
g is nonzero, §(1,) ' = Cg(¢,) for some constant
C. So we can perform this step by computing the
phase of § into the phase. For the values where §
is zero we can just leave the phase unchanged as
those terms are not present in the superposition.

4. Let A= {y € G: §(¢y) # 0}. Then the amplitude
of | —s) is

> "y (5) vy (=)

yEA

>

yeA

11
VIAlVIG]
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so we measure | — s) with probability 5.

Thus the algorithm succeeds in identifying s with
probability a8 and only requires one query of f and
one query of g.

_ A

6.3 Examples We show how the hidden shift prob-
lems we considered earlier fit into the framework of the
hidden coset problem. In the shifted multiplicative char-
acter problem over finite fields, G is the additive group
of Fq, g = x and H is trivial since the shift is unique
for nontrivial x. In the shifted multiplicative character
problem over Z/nZ, G is the additive group of Z/nZ,
g = x and H is the subgroup {0,¢,...,n/¢}, where ¢
(which is a factor of n) is the period of x. In the shifted
period multiplicative character problem over Z/nZ for
unknown n, G is the additive group of Z, g = x and H
is the infinite subgroup ¢Z.
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