
Limited Randomness LT Codes

Chris Harrelson∗ Lawrence Ip† Wei Wang‡

{chrishtr,lip,wangwei}@eecs.berkeley.edu

Abstract

LT codes are asymptotically optimal rateless erasure codes with highly efficient encod-
ing and decoding algorithms. In the original analysis of these codes, it was assumed that
for each encoding symbol, the neighbors used to generate that encoding symbol are chosen
uniformly at random.

Practical implementations of LT codes cannot afford this amount of randomness, be-
cause all random bits must be communicated to the decoding party. Instead, they use
a linear congruential generator to reduce the randomness used per encoding symbol to a
seed consisting of two random numbers. We show that such limited randomness LT codes
perform almost as well as the fully random version. Thus even limited randomness LT
codes are asymptotically optimal.

1 Introduction

When transmitting data over an IP network, recovery from dropped packets is usually achieved
by using TCP, where the receiver sends acknowledgements or requests for retransmission for
each packet. Such feedback-based reliability schemes do not scale well when transmitting over
high latency or high loss networks [5]. These issues are of particular importance in one-to-
many (multicast) and many-to-one data delivery, where to achieve scalability, we must limit
the amount of feedback to the senders and the number of redundant packets sent to receivers.
Erasure codes rely on the principle that with redundant encoding, lost packets can be recovered
at the receiver without the need for retransmission. In what has become known as the digital
fountain approach, efficient erasure codes have been proposed as a mechanism to achieve relia-
bility without feedback and with minimal redundancy, so that the receiver can recover k data
symbols by collecting any subset of (1+ ε)k from a stream of encoding symbols [1, 2]. Examples
of applications in use today are Transporter Fountain, the flagship product of Digital Fountain,
Inc. [3], and multicast protocols such as WebRC [10].

Traditional erasure codes such as Reed-Solomon codes and Tornado codes [11] are typically
block based with a fixed rate, that is n encoding symbols consisting of k input symbols and n−k
redundant symbols, with n determined a priori, for a rate of k/n. This rate must be estimated
in advance, and significant overhead is incurred when the rate is too high or too low.

LT codes eliminate the need to obtain an accurate estimate of the rate [8]. They are rateless
erasure codes, in the sense that a potentially unlimited number of of encoding symbols can be
generated on the fly. As long as enough encoding symbols are received, regardless of which

∗CS Division, UC Berkeley. Supported in part by a GAANN fellowship and NSF grant CCR-0105533.
†CS Division, UC Berkeley. Supported by DARPA Grant F30602-01-2-2054.
‡EECS Department, UC Berkeley. Supported by an NSF Graduate Fellowship and a Lucent GRPW Grant.

1

symbols are received, the receiver will be able to recover the original data with high probability.
Thus only as many encoding symbols as required need be generated. We note that two other
rateless codes have recently been designed which may have advantages over LT codes in practice
[12, 13].

The original analysis of LT codes showed that k input symbols can be recovered with prob-
ability 1− δ from a set of k + O(

√
k log2 k/δ) fully randomly generated encoding symbols. The

analysis assumed that the input symbol neighbors of each encoding symbol are chosen uniformly
at random.

In practice, implementations of LT codes use a linear congruential generator to reduce the
amount of randomness used to generate the neighbors of each encoding symbol (from O(k log k)
bits1 per encoding symbol to O(log k) bits per symbol) [6, 7]. Since these bits need to be
sent to the decoder, this dramatically reduces the transmission overhead. Although simulations
have shown that the redundancy of the encoding process with a linear congruential randomness
generator is virtually indistinguishable from that of the encoding process with full independence
[9], there have been no analytical results on the performance of these limited randomness LT
codes.

Our contribution In this paper we prove analytically that with the linear congruential
generator encoding process, k+O(k5/6polylog(k, 1/δ)) encoding symbols are sufficient to recover
k input symbols with probability 1− δ. The number of symbol operations to encode and decode
remains unchanged, O(k log k/δ). This result provides a theoretical justification for the use of
LT codes with only limited randomness.

2 Description of LT Codes

2.1 Erasure channel model

LT codes are designed to work over an erasure channel. In a typical application the length `
of input and encoding symbols is chosen to be just less than the size of the packet payload
(we need to reserve some room to transmit overhead information like the random bits used to
generate each encoding symbol). If N is the input data length, the number of input symbols is
dk = N/`e.

We assume that packets may be lost or reordered in transit but not corrupted. In addition,
we assume that the losses and reorderings are oblivious to the random bits used in the encoding
algorithm. (We assume that corrupted packets are handled by another network layer, which
performs for example appropriate CRC checks.)

2.2 Encoding process

Full-randomness version In the original construction of LT codes, each encoding symbol is
generated independently of all other encoding symbols, by the following process:

1. Randomly choose the degree d of the encoding symbol according to a degree distribution
(see Section 2.6).

2. Choose a random set of d distinct input symbols as neighbors of the encoding symbol.

3. Set the value of the encoding symbol to be the XOR of the values of the d neighbors.

1This is a worst case bound; on average O(log k log k/δ) bits are required.

2

One can view this process as the construction of a bipartite graph. We have k vertices on
one side of the graph, each of which represents one input symbol. On the other side we have
one vertex for each encoding symbol. There is an edge from each encoding symbol to its d input
symbol neighbors.

Each encoding symbol is then put into a packet that contains its value, its degree and its
neighbor list. These packets are then sent to the decoder. Note that each packet contains
dd log ke bits for the neighbor list.

Limited randomness version In practice, dd log ke bits per packet is an unreasonably
large number (as the average degree of an encoding symbol turns out to be Ω(log k/δ)). Instead,
the d neighbors of each encoding symbol are chosen as follows:

1. Choose two integers a ∈ {1, . . . , k − 1} and b ∈ {0, . . . , k − 1} uniformly at random.

2. The ith neighbor of the encoding symbol is then the (ai + b mod k)th input symbol.

Here we have assumed without loss of generality that k is prime, so that we cover all input
symbols evenly. This allows us to send only d2 log ke bits per symbol for neighbor information,
since the decoder can reconstruct the neighbors easily given the two random seeds a and b.

2.3 Decoding process

The decoding process is the same for limited randomness LT codes as in the original exposition.
The decoder first receives K encoding symbols and the bipartite graph, from which it will try
to recover input symbols, the neighbors of the encoding symbols in the graph. Let the set of
received encoding symbols which have not been fully processed be C (initially C contains all K
packets). We repeatedly choose an encoding symbol c from C and do one of the following, until
none of them can be done, or all input symbols are recovered:

1. If c no longer has any unrecovered neighbors, it is useless to us, so we remove it from C.

2. If c is adjacent to exactly one input symbol we say that that input symbol is covered by
c. We then recover that input symbol, since its value is the same as the value of c. Now
c has finished being processed, and so we remove it from C.

3. Otherwise consider each neighbor of c in turn. If it has already been recovered, then XOR
its value into the value of the c and remove the edge connecting that neighbor to c. Since
c still has unrecovered neighbors, keep c in C.

We say that the decoding process succeeds if it recovers all of the input symbols from at
most K encoding packets. Otherwise, we say that it fails.

2.4 Released encoding symbols and the ripple

At the point when an encoding symbol has exactly one remaining unrecovered input symbol
neighbor, we say that the encoding symbol is released. If an encoding symbol is ever discarded
in step 1 of the decoding process, we say that it is wasted. The set of wasted encoding symbols
is exactly the set which does not end up helping us recover any input symbols. In particular, if
the decoding process is successful there will be exactly K − k wasted encoding symbols.

The set of as-of-yet unrecovered input symbols which are covered by a released encoding
symbol is called the ripple. Note that when an encoding symbol releases, it may or may not
increase the size of the ripple because the input symbol it covers may already be in the ripple.

3

The decoding process processes input symbols in the ripple one-by-one. It is able to continue
if and only if the ripple has nonzero size. If we can ensure that the ripple always has nonzero
size with high probability, then we have shown that the decoding process has succeeded with
high probability.

2.5 General notation

Let k be the number of input symbols; we assume for simplicity and without loss of generality
that k is prime. Let K = βk be the number of encoding symbols required to decode with
probability 1 − δ under the assumption of completely random neighbors. We will require a
slightly larger number of symbols in our analysis (see Lemma 5).

At each iteration of the decoding process, let L be the number of unrecovered input symbols
(note that as the decoding process proceeds, L decreases in value) and S be the set of recovered
input symbols.

Let α = max(20, 2(8 − (log δ/6))/ log k), f = cfk
−1/6(log k/δ)1/2(log k)1/2α1/6, λ = 1

6
log k,

and R = cRk5/6(log k)1/2(log k/δ)−1/2α1/6. Their role in the analysis will be explained later.

2.6 Degree Distribution

Choosing a good degree distribution is the key to making LT codes work. The distribution
determines the number K of encoding symbols needed to ensure that the ripple always has
nonzero size with high probability (see Section 2.4). A large ripple size increases the probability
of successful decoding but also increases the number of wasted encoding symbols. So we need
a distribution that keeps the ripple size just large enough for successful decoding. One such
degree distribution is the Robust Soliton distribution:

Definition 1 (Robust Soliton distribution [8])2 Let

ρ(i) =

{
1/k : i = 1

1/i(i− 1) : i = 2, . . . , k

τ(i) =

R/(ik) : i = 1, . . . , k/R − 1

2e2(R log R
δ
)/k : i = k/R

0 : i = k/R + 1, . . . , k

β =
k∑

i=1

(ρ(i) + τ(i))

The Robust Soliton distribution µ(i) for i = 1, . . . , k is µ(i) = (ρ(i) + τ(i))/β.

3 Proof outline

Some intuition The loss of independence amongst the neighbors of each encoding symbol
makes it more difficult to analyze the decoding process. This is because it introduces depen-
dencies between the set of recovered input symbols S and the input symbol a released encoding
symbol covers.

2The original LT codes analysis required that R = Ω(log k
δ

√
k) and minimized the number of symbols required

by setting R = c log k
δ

√
k for some constant c. For our analysis of LT codes using a linear congruential generator

we need a larger value of R (see the definition in Section 2.5).

4

We analyze the decoding process by using pessimistic filtering to selectively discard symbols
to remove the dependencies. The idea behind pessimistic filtering is that discarding symbols can
only decrease the probability of successful decoding. Once we have removed the dependencies,
the original analysis of LT codes with full randomness will apply (with some modifications).

Intuitively, the earlier a symbol is released, the less uniform the distribution of the released
edge. When a degree d symbol is released, we know that exactly d − 1 of its neighbors lie in
the set of processed input symbols, and the smaller this set is, the more constraints we have
on the parameters a and b in the linear congruential generator and thus the more biased the
distribution of the remaining edge.

To counteract this effect, we pessimistically filter the O(k−1/6polylog(k, 1/δ)) fraction of
symbols that release too early. Symbols that release later than this lose at most about log k bits
of entropy and since a, b contain 2 log k bits of entropy, we will be left with about log k bits
of entropy in the distribution of the released edge. The released edge now has a near uniform
distribution. We can then use pessimistic filtering to force the distribution to be exactly uniform.

Proof outline Our primary task is to prove that the distribution of the set S of already-
recovered input symbols remains uniformly distributed throughout the execution of the recovery
process. If this is the case, from the perspective of the already-recovered input symbols, the
neighbors of a new encoding symbol will appear to be independent, even though they have been
chosen using a linear congruential generator.

It is important to keep in mind the distinction between recovering input symbols and releasing
encoding symbols. When an input symbol is recovered, the corresponding encoding symbol may
have released much earlier in the process, even though it has only just now been processed. A
released encoding symbol may not even contribute to the recovery of an input symbol, as there
could be several released encoding symbols which cover the same input symbol. The first part of
our proof (which is concerned with preserving uniformity) only deals with the recovery time of
input symbols. The second part (which ensures that the ripple does not disappear) deals with
the release time of encoding symbols.

In Section 4, we define what we mean for an encoding symbol to release too early. If it
releases too early, we are unable to prove that the distribution of the covered input symbol
looks uniform. We use pessimistic filtering to discard such misbehaving encoding symbols.

Given these restricted release times, we show in Section 5 that when a new encoding symbol
covers an input symbol, the distribution of the input symbol covered is almost uniform, almost
all of the time. This brings us most of the way to the goal of showing that S (after pessimistic
filtering) is exactly uniform. The first “almost”, that the newly recovered input symbol is not
exactly uniformly distributed, will be taken care of by pessimistic filtering. We pessimistically
filter away the peaks in the distribution to obtain a uniform distribution, at the cost of a small
increase in the number of encoding symbols required to decode.

In order to remove the second “almost”, we introduce the concept of a good set. The idea
is that if the distribution is what we want almost all of the time, it must be true for almost
all sets S. We call these sets good.3 Over the course of the decoding process, the probability
that we encounter a bad set is very small. So we simply absorb this probability into our overall
probability of failure, and then assume for the rest of the proof that there are no bad sets.

In Section 6, we show that even though we discard symbols that release too early, because
symbols with different degrees release at different points, the expected number of symbols re-
leased at each step is only slightly less than in the full randomness case.

In Section 7, we show that after all of the above steps, we can successfully decode with high

3A good set can be interpreted as one for which linear congruential sequences look random.

5

probability. As in the original LT codes paper, we divide the analysis into two parts. We use a
random walk to model the size of the ripple until about R symbols remain to be processed and
then use a coupon collector argument to show that we can decode the remaining R symbols.
Our random walk argument is more complicated than in the original analysis because the events
involved are not actually independent.

In Section 8, we calculate the overhead incurred due to pessimistic filtering and then optimize
the parameters R and f to minimize the number of symbols required.

4 Restricting degree release times

For L ≥ R, we say that a degree d symbol releases too early unless

εd,L =

√
αd2 log k(

k−L
k

)d−1 L
k
(k − 1)

≤ f (1)

(see Section 2.5 for the definition of the values f , λ and R). In our analysis, for L ≥ R we will
only allow a degree d encoding symbol to release if it has not released too early. Symbols that
release too early are pessimistically filtered away. For the values that we assign f and R, and
for L ≥ R, condition (1) implies d ≤ λk/R.

We now define a more restrictive condition that is easier to work with and is a sufficient
condition for condition (1) to hold. Since d ≤ λk/R and L ≥ R, (1) is true if(

αk2λ2 log k

R3f 2

)
≤
(

1 − L

k

)d−1

. (2)

5 Near-uniform Distribution of Released Edge

We analyze what happens when an input symbol is covered. As observed in Section 3, this is
not the time when the corresponding encoding symbol is released. We only need to consider
the distribution of the covered input symbol, given that the encoding symbol has already been
released and has not released too early. We only consider symbols of degree 3 and higher, because
the neighbors of an encoding symbol with degree less than 3 are already independent.

Fix L, the number of as-of-yet unrecovered input symbols, and d the degree of the encoding
symbol. We model the set S of already-recovered symbols as follows. For each input symbol
a, we independently place it in S with probability p = k−L

k
. Let Xa be the indicator random

variable of the event a ∈ S. This is actually a relaxation of the definition of S we really want,
since the size of S is now binomially distributed with mean k−L, and not exactly k−L. Later
we will condition on the size of S being exactly k − L. Consider the ratio4

rm =

∑
l

∑
a,b: al+b=m XbXa+b · · ·Xa(l−1)+b(1 −Xal+b)Xa(l+1)+b . . . Xa(d−1)+b∑
l

∑
a,b XbXa+b · · ·Xa(l−1)+b(1 −Xal+b)Xa(l+1)+b . . . Xa(d−1)+b

.

rm is the conditional probability that, for some encoding symbol c of degree d which has re-
leased, the input symbol m is covered by c but not yet recovered. The numerator counts the
number of (a, b) pairs that generate degree d symbols that have been released and cover m. The

4To simplify the notation, we assume that all additions and multiplications in the subscript values are com-
puted mod k.

6

denominator counts the number of (a, b) pairs that generate degree d symbols that have been
released.

Let T l
a,b = XbXa+b · · ·Xa(l−1)+bXa(l+1)+b · · ·Xa(d−1)+b and U l

a,b = XbXa+b · · ·Xa(l−1)+b(1 −
Xal+b)Xa(l+1)+b . . . Xa(d−1)+b, N be the value of the numerator, and D be the value of the de-

nominator. We rewrite rm as N
D

=
(1−Xm)

∑
l

∑
a,b: al+b=m T l

a,b∑
l

∑
a,b U l

a,b
.

When m ∈ S, Xm = 1, so rm = 0. For m /∈ S we lower bound rm. Conditioned on m /∈ S,
E[N] = pd−1(k−1)d and E[D] = pd−1(1−p)k(k−1)d, so E[N]/E[D] = 1

(1−p)k
= 1/L. We lower

bound rm by showing that the numerator and denominator are each close to their respective
means. In the following analysis all probabilities and expectations will be conditioned on m /∈ S.

The numerator Since m /∈ S, (1 − Xm) = 1, we just need to bound
∑

l

∑
a,b: al+b=m T l

a,b.
We do this by applying an inequality of Janson. The inequality gives a Chernoff-like lower
bound with the strength of the bound depending on the dependence between pairs of the random
variables.

Proposition 1 (Janson bound) [4] Let {Jq}q∈Q be a set of independent 0–1 random variables.
Let {Qi} be a collection of subsets of Q. Let Yi, 1 ≤ i ≤ n, be the indicator random variable
for the event that Jq = 1 for all q ∈ Qi. Let Y =

∑
i Yi. Define ∆ =

∑
Yi∼Yj

Pr[Yi ∧ Yj], where

Yi ∼ Yj means that they are dependent (that is, when Qi ∩ Qj 6= ∅). Then for any 0 < ε < 1,

Pr[Y ≤ (1 − ε)E[Y]] ≤ exp
(
− ε2E[Y]

2+∆/E[Y]

)
.

To apply the bound, we need to compute an upper bound on ∆. Consider the equations

a1i + b1 = a2j + b2, a1i
′ + b1 = m, a2j

′ + b2 = m,

1 ≤ a1, a2 ≤ k − 1, 0 ≤ b1, b2 ≤ k − 1, 0 ≤ i, j, i′, j′ ≤ d− 1,

where all except d and m are variables. Solutions to these equations model dependencies between
two terms T l1

a1,b1
and T l2

a2,b2
. The number of solutions to this set of equations, at most kd4, is

an upper bound on the number of dependent pairs of terms. If T l1
a1,b1

and T l2
a2,b2

are dependent,

Pr[T l1
a1,b1

∧ T l2
a2,b2

] ≤ pd−1, since in the worst case they share all variables. Thus ∆ ≤ pd−1d4k.

We now apply Janson’s bound, with ε = εd,L =
√

αd2 log k
(k−1)pd−1(1−p)

. This gives

Pr[N ≤ (1 − εd,L)E[N]] ≤ exp

(
−

ε2
d,LE[N]

2 + ∆
E[N]

)
= exp

(
−

αd2 log k
(k−1)pd−1(1−p)

(pd−1(k − 1)d)

2 + pd−1d4k
pd−1(k−1)d

)
≤ 1

kα/2
,

where we upper bounded 1− p by 1 and 2 + d3k/(k− 1) by 2d3 because we are only considering
encoding symbols of degree at least 3, and values of k much greater than 3. Then we have

Lemma 1 N ≥ (1 − εd,L)E[N] with probability at least 1 − k−α/2.

The denominator Next we bound the denominator. We need to bound it from above, so
we cannot apply Janson’s inequality. Instead, we use Chernoff bounds.

Proposition 2 (Chernoff bound) Let Yi, 1 ≤ i ≤ n, be independent 0–1 random variables. Let

Y =
∑

i Yi. Then for 0 < ε < 1, Pr[Y ≥ (1 + ε)E[Y]] ≤ exp
(
− ε2E[Y]

3

)
.

Since we have conditioned on m /∈ S, we know that Xm = 0. To simplify our arguments, we
first symmetrize the sum by removing the conditioning on Xm. Next, we bound the symmetrized
sum and then show that setting Xm = 0 does not change the value of the sum by too much.

7

Consider the value of the sum without the conditioning on Xm. First we bound the inner
sum Dl =

∑
a,b U l

a,b and then sum over l. Not all terms in the sum are independent, so a
Chernoff bound is not directly applicable. To overcome the dependence, we split Dl into groups
of independent terms. For i ≤ d−1, let I i

a = {(a, b) : b = (d ·j + i) ·a for some j, 0 ≤ j ≤ bk/dc}.

Lemma 2 For any fixed a ∈ [1 : k−1], i ≤ d, the terms U l
a,b are independent for each (a, b) ∈ I i

a

such that b ∈ [0 : k − 1], and |I i
a| ≥ bk/dc. Furthermore, for any d, L pair that satisfy (2), at

most εd,LE[Dl] (a, b) pairs do not appear in any of the sets I i
a.

Proof: Omitted.

Let (Dl)
i
a =

∑
(a,b)∈Ii

a
U l

a,b. Each term within each sum is 1 with probability pd−1(1 − p), so

E[(Dl)
i
a] = pd−1(1 − p)bk

d
c. For ε = εd,L, the Chernoff bound gives

Pr[(Dl)
i
a ≤ (1 − εd,L)E[(Dl)

i
a]] ≤ exp

(
−

ε2
d,LE[(Dl)

i
a]

3

)
= exp

− αd2 log kpd−1(1−p)b k
d
c

pd−1(1−p)(k−1)

3

 ≤ k−α.

By taking a union bound over all of the sets I i
a and all l we obtain

Pr[
∑

l

∑
a,i

(Dl)
i
a ≥ (1 + εd,L)pd−1bk

d
c(k − 1)d2] ≤ (k − 1)d2

kα
≤ k3−α.

We bound the number of uncovered (a, b) pairs by εd,LE[D] by Lemma 2. For these, all we can
say is that they sum up to at most εd,LE[D]. If we now condition on Xm = 0, we affect at
most kd terms in D. So conditioning on the value of Xm can change the value of D by at most
kd ≤ εd,LE[Dl] ≤ εd,LE[D]. Thus

Lemma 3 D ≤ (1 + 3εd,L)E[D] with probability at least 1 − k3−α.

The ratio We can now bound rm.

Lemma 4 For all L > R and d that satisfy (2), at least a 1− 2k7−α/2 fraction of the sets S of
size k − L satisfy the following:

Suppose that an encoding symbol of degree d recovers an input symbol when S is the current
set of recovered input symbols. Then for all m 6∈ S, the probability that the encoding symbol
recovers m is at least 1

L
(1 − 4f). We call such sets S good.

Proof: (Sketch) Observing that Pr(|S| = k − L) > 1/k, and taking a union bound over L,
m and d combined with Lemma 1 and Lemma 3 gives rm ≥ (1 − 4εd,L) 1

L
≥ (1 − 4f) 1

L
with

probability at least 1 − 2k7−α/2. Thus a 1 − 2k7−α/2 fraction of the sets S are good.

Corollary 1 By pessimistic filtering, for any good S we can force the distribution over newly
recovered input symbols outside of S to be exactly uniform, while losing a 1/(1−4f) factor in the
number of encoding symbols required. Furthermore, if we have several independently generated
encoding symbols releasing at the time of a single good S, the distributions of their released edges
are independent.

Corollary 2 Consider an evolution of recovered symbols which is completely uniform (i.e., each
set of symbols recovered so far is random). Then with probability at least 1− 2k8−α/2 > 1− δ/3,
this recovery process never encounters a bad set.

8

6 Number of symbols that release too early

In order to show that the decoding process succeeds with high probability, we first restate and
prove our version of the robust uniform release probability proposition (Proposition 14 in [8]).
The proposition shows that, with the Robust Soliton distribution, when a new, random input
symbol is recovered among L remaining unrecovered input symbols, the expected number of
encoding symbols released is lower bounded by L

L−θR
, for a constant θ < 1.

Proposition 3 (robust uniform release probability): For all L = k − 1, . . . , R, the expected

number of symbols that do not release too early is at least L
L−θR

(
1 − αλ2k2 log k

R3f2

)
, where θ = 1

16e
.

Note that we actually want to show that the release rate is sufficiently high for good sets
(see Lemma 4). The result above was obtained by assuming we had a uniform distribution over
all sets. We can lower bound the release rate by upper bounding the release rate for bad sets
by K = O(k). Since the bad sets form at most a 2k8−α/2 fraction of all sets this means that we
lose at most K2k8−α/2 = O(k9−α/2) in our release rate. This results in a lower bound of at least

L
L−θR

(
1 − αλ2k log k

R2f2 −O(k9−α/2)
)
.

7 Random Walk and Coupon Collector

We show that we can successfully decode by showing that the ripple size is always positive with
high probability. The proof is in two parts. For L = R, . . . , k − 1, we model the ripple size as a
random walk. For L = 1, . . . , R we use a coupon collector argument.

Let X be the LT decode process from an encoding with limited randomness. We lower bound
the probability that X succeeds. Ideally, we would like to restrict ourselves to a recovery process
that evolves randomly, that is, the next input symbol recovered is chosen uniformly from the set
of unrecovered input symbols. We can achieve this with pessimistic filtering, Lemma 4 and its
corollaries, and as a result, we can prove a theorem almost as strong as in the full-randomness
case.

Theorem 1 Excluding the contribution from τ(k/R), the ripple size is positive for all L =
k − 1, . . . , R, with high probability (1 − δ/3).

We show that if there are only R unprocessed input symbols remaining, then the contribution
of τ(k/R) will be sufficient to complete the decoding process with high probability.

Proposition 4 Using only the contribution of τ(k/R), the number of encoding symbols released
for L = R, . . . , 2R, K

∑2R
L=R r(L), is at least R log(R/δ) with high probability (1 − δ/3).

By earlier results and using pessimistic filtering we can ensure that each released symbol uni-
formly covers the remaining R unprocessed input symbols. By the results about the well known
coupon collector’s problem, all the R unprocessed input symbols are covered with probability
at least 1 − δ/3.

8 Number of encoding symbols required

The total fractional overhead is R log k/δ
k

+ αλ2k2 log k
R3f2 + +k9−α/2 + 4f , where the first term comes

from the coupon collector argument, the second term from the symbols that are discarded

9

for releasing too early and the third term from the symbols that are discarded to make the
distribution of the covered input symbol exactly uniform. Optimizing over f and R we find
that:

Lemma 5 The number of encoding symbols needed is at most k + O(k5/6polylog(k, 1/δ)).

9 Acknowledgements

We thank Kenji Obata, Satish Rao, Hoeteck Wee and Jason Waddle for valuable discussions.
Special thanks to Michael Luby for posing this problem, suggesting some of the intuition behind
the proof, proposing the use of a Poisson random variable to complete the random walk analysis
in the original LT codes paper, and pointing out errors in a previous draft of this paper.

References

[1] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital fountain approach to
reliable distribution of bulk data. In Proc. ACM SIGCOMM, pages 56–67, 1998.

[2] J.W. Byers, M. Luby, and M. Mitzenmacher. Accessing multiple mirror sites in parallel:
using Tornado codes to speed up downloads. In Proc. IEEE INFOCOM, pages 275–283,
1999.

[3] http://www.digitalfountain.com.

[4] S. Janson. Poisson approximation for large deviations. Random Structures and Algorithms,
1(2):221–230, 1990.

[5] T. V. Lakshman and U. Madhow. The performance of TCP/IP for networks with high
bandwidth-delay products. IEEE/ACM Transactions on Networking, 5(3):336–350, June
1997.

[6] M. Luby. Information additive code generator and decoder for communication systems. US
Patent No. 6,307,487, October 2001.

[7] M. Luby. Information additive code generator and decoder for communication systems. US
Patent No. 6,373,406, April 2002.

[8] M. Luby. LT codes. In Proc. IEEE FOCS, 2002.

[9] M. Luby. Personal communication, February 2003.

[10] M. Luby, V. K. Goyal, S. Skaria, and G. Horn. Wave and equation based rate control using
multicast round-trip time. In Proc. ACM SIGCOMM, pages 191–204, 2002.

[11] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman. Practical loss-resilient codes.
In STOC, 1997.

[12] P. Maymounkov. Online codes. Technical report, NYU, November 2002. TR2002-833.

[13] A. Shokrollahi. Raptor codes. Technical report, Digital Fountain, June 2003. DF2003-06-
001.

10

