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Abstract

We show that the ‘standard’ quantum algorithm for the abelian hidden subgroup problem is not
only efficient but is optimal in the information theoretic sense, in that it maximizes the probability of
correctly identifying the hidden subgroup. The proof uses semidefinite programming to show that the
standard algorithm implements the optimal set of measurements.

The arguments break down for the nonabelian hidden subgroup problem, and for the special case of
the dihedral group, we give explicit expressions for the optimal measurement to distinguish between the
subgroups given one random coset state. This measurement cannot be expressed in terms of the Fourier
basis, which suggests that to find a quantum algorithm for the nonabelian hidden subgroup problem we
may have to look beyond the Fourier transform.

1 Introduction

The greatest success in quantum algorithms to date has been Shor’s algorithm for the order finding problem
(and thus for factoring) [20]. The natural generalization of the order finding problem is the hidden subgroup
problem:

Definition 1 (Hidden Subgroup Problem). Given a group G, an unknown subgroup H, and oracle
access to a function f that is constant and distinct on cosets of H, find H.

The abelian hidden subgroup problem (when G is abelian) can be solved using a natural generalization
of Shor’s algorithm in what has sometimes been called the ‘standard’ algorithm for the hidden subgroup
problem.

Algorithm 1 (Abelian Hidden Subgroup Problem). 1

1. Compute the superposition ∑
g∈G

|g〉|f(g)〉,

and measure the second register to obtain a superposition over cH, a random coset of H, in the first
register. ∑

h∈H

|ch〉|f(c)〉.

∗University of California, Berkeley. Supported by DARPA Grant F30602-01-2-2054. lip@cs.berkeley.edu
1Here as for the rest of the paper, we ignore normalization constants where convenient.
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2. Compute the Fourier transform of the coset state to obtain∑
χ∈Ĝ

∑
h∈H

χ(ch)|χ〉,

where Ĝ is the dual group of G, the group of characters of G (homomorphisms from G to (C,×)).

3. Measure the character χ and repeat the first 3 steps n times.

4. Output the subgroup of G whose ‘perp’2 is equal to the subgroup of Ĝ generated by the observed
characters χ1, . . . , χn.

The outstanding open question in quantum algorithms has been to find an efficient quantum algorithm
to solve the nonabelian hidden subgroup problem. In particular, graph isomorphism can be formulated as
a hidden subgroup problem over the symmetric group [12]. Recently Regev showed that a lattice problem,
the n2.5-unique shortest vector problem, has a quantum reduction to the dihedral coset problem (a problem
intimately related to the dihedral hidden subgroup problem) [18]. Both these problems are believed to be
neither in P nor NP-hard.

All attempts to solve the nonabelian hidden subgroup problem have approached the problem in a similar
way: generate random coset states as in Step 1 of the standard algorithm and then try to distinguish
between random coset states of different subgroups. The problem of distinguishing between these states
has been approached from two different directions, one information theoretic, the other computational.

The information theoretic question: Is there a measurement that distinguishes between the different
subgroups? This was answered by Ettinger, Høyer and Knill who showed that for general groups only
a polynomial number of coset states are required to information theoretically determine the hidden sub-
group [6]. However, the measurements they give do not appear to be efficiently implementable.

The computational question: Is there an efficiently implementable measurement that distinguishes
between the different subgroups? All attempts to answer this question have started with an efficiently
computable basis and then tried to analyze what class of groups this basis is able to handle [5, 7, 8, 9,
11, 15, 16, 19]. In particular, all of these attempts measure in the Fourier basis, that is, they compute
the nonabelian analogue of Step 2 of the standard algorithm. This approach has had only limited success.
Most of the results have been negative, and the positive results have tended to be only applicable to very
specific classes of groups.

The main difficulty is that the Fourier basis is the only ‘natural’ basis we know and we have no other
candidate bases to try. This motivates the question:

For the nonabelian hidden subgroup problem, is the Fourier basis the right one? And if not,
what is the right basis?

Our work is an attempt to answer this question.

1.1 Our Results

To have any hope of coming up with an efficiently implementable basis we need to look for a basis that
has some structure. We impose structure by looking for an information theoretically optimal basis. We
consider the problem of determining the optimal set of measurements to distinguish between random coset
states. If we make n queries to f , we want to distinguish between the different subgroups given n tensored
random coset states (from the same subgroup). In general, the optimal measurement will be some joint
measurement over all the tensored states. More precisely, we consider the following question:

2H⊥, the ‘perp’ of a subgroup H is the set of characters χ whose kernel contains H, that is characters χ that satisfy
χ(h) = 1 for all h ∈ H.
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Definition 2 (Optimal Measurement). Suppose the hidden subgroup H is chosen uniformly at random
from all subgroups of G. Given n tensored random coset states (cosets of H), what is the measurement
that maximizes the probability of correctly identifying H?

The most general quantum measurement can be expressed in terms of a POVM (positive operator-
valued measure). The optimal POVM is a solution to a semidefinite program, where the variables are
the matrices representing the POVM and the density matrices corresponding to the random coset states
appear in the objective function.

For the abelian hidden subgroup problem, we give an explicit solution to this semidefinite program and
show that the resulting optimal measurement precisely corresponds to the measurement implemented by
the standard algorithm. Thus not only is the standard algorithm efficient for the abelian hidden subgroup
problem, it is also optimal in an information theoretic sense.

For the nonabelian subgroup problem, the arguments used in the abelian case break down. We are
able to explicitly solve this semidefinite program when the group is a dihedral group (group of symmetries
of a regular p-gon) and we have one random coset state. The resulting optimal measurement cannot be
implemented using measurements in the Fourier basis, even if we allow the freedom to choose the basis in
the irreducible representations. This shows that the measurements3 given by Ettinger and Høyer for the
dihedral group are not optimal [5]. This suggests that, in general, if we want to measure in the optimal
basis for the nonabelian hidden subgroup problem, we must look beyond the Fourier transform.

1.2 Related Work

For general groups, Ettinger, Høyer and Knill showed that information theoretically, only a polynomial
number of coset states are required to determine the hidden subgroup [6].

The standard algorithm arose from work by Simon [21], Shor [20] and Kitaev [14]. Hallgren, Russell,
Ta-Shma [9] and Grigni, Schulman, Vazirani and Vazirani [8] considered the natural generalization of the
standard algorithm to nonabelian groups using group representations, where they defined the weak standard
method (only measuring the name of the representation) and the strong standard method (measuring the
name of the representation as well as the row and column). Moore, Rockmore, Russell and Schulman
showed that there are groups for which the strong standard method gives an advantage over the weak
standard method [16].

There are various results for specific classes of groups. Ettinger and Høyer gave an algorithm for
the dihedral group which makes polynomially many quantum queries, but requires exponential classical
postprocessing [5]. Kuperberg gave an algorithm that required a subexponential number of quantum
queries [15]. Rötteler and Beth gave an algorithm for the wreath product Zn

2 o Z2 [19]. Ivanyos, Magniez
and Santha gave algorithms for groups with with small commutator subgroup and for groups having an
abelian normal 2-subgroup of small index [11]. Friedl, Ivanyos, Magniez, Santha and Sen gave an algorithm
for Zn

p o Z2 [7].
The results presented here are similar in flavor to that of Ettinger and Høyer, who defined a notion

of an ‘efficient elimination observable’, showed that this was consistent with the Fourier transform for the
abelian hidden subgroup problem, and that such observables do not exist for the dihedral group [4]. Their
elimination observables are a restricted class of measurements which eliminate incorrect subgroups with
constant probability for each measurement on one copy of a coset state, and thus will eliminate all incorrect
subgroups with constant probability after polynomially (in log |G|) many repetitions. In contrast, rather
than restricting ourselves to a particular class of measurements that operate on only one coset state, we
optimize over all joint measurements over k tensored coset states.

3Ettinger and Høyer use an abelian Fourier transform on Zp × Z2 but their measurements are equivalent to taking the
nonabelian Fourier transform on D2p with choice of basis given by a Hadamard.
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Semidefinite programming has appeared in quantum information in various contexts. Kitaev used
semidefinite programming duality to prove the impossibility of quantum coin flipping [13], Doherty, Parrilo
and Spedalieri used semidefinite programming to give criteria for separability [2], and Rains gave bounds
on distillable entanglement using semidefinite programming [17].

In the context of quantum computation, Barnum, Saks and Szegedy reformulated quantum query
complexity in terms of a semidefinite program [1].

The problem of finding the optimal measurement to distinguish between a set of quantum states was first
formulated as a semidefinite program in 1972 by Holevo4, who gave optimality conditions equivalent to the
complementary slackness conditions [10]. Recently, Eldar, Megretski and Verghese showed that the optimal
measurements can be found efficiently by solving the dual followed by the use of linear programming [3].

2 Background

2.1 Density Matrices and POVMs

Density matrices allow us to describe quantum systems whose state is not known. If a system is the state
|ψi〉 with probability pi (an ensemble {pi, |ψi〉}), the corresponding density matrix for the system is

ρ =
∑

i

pi|ψi〉〈ψi|.

Density matrices capture everything we can say about a quantum system. If two different ensembles have
the same density matrix, the ensembles are completely indistinguishable. Any set of measurements we
make will have exactly the same statistics for both ensembles5.

The most general quantum measurement can be expressed as a POVM (positive operator-valued mea-
sure). A POVM can be described as a collection of matrices {Πi}i that are positive semidefinite, and
complete (

∑
i Πi = I). If a system is in the state ρ and we perform the measurement described by {Πi}i,

the probability that we obtain outcome i is tr(Πiρ). Projections are special cases of POVMs. If we want
to project onto the basis {|φi〉}i, the corresponding POVM is given by {Πi = |φi〉〈φi|}i. The probability
of measuring outcome i given state |ψ〉 is then tr(Πiρ) = tr(|φi〉〈φi||ψ〉〈ψ|) = |〈φi||ψ〉|2.

We will use ρH to denote a random coset state of subgroup H (|G|/|H| cosets, each occurring with
probability |H|/|G|,

ρH =
|H|
|G|

∑
c

|cH〉〈cH|,

where |cH〉 is the uniform superposition over the coset cH and the sum is over coset representatives of H.

2.2 Optimal Set of Measurements as a Semidefinite Program

The optimal set of measurements to distinguish a set of quantum states can be expressed as a semidefinite
program. Given a set of density matrices ρi with prior probabilities pi, the POVM {Πi}i that maximizes

4This was before the advent of semidefinite programming! In fact, the idea for this paper arose when I read Helstrom’s book
and observed that Holevo’s formulation was a semidefinite program and that his optimality conditions followed immediately
(and much less painfully) from standard theorems in semidefinite programming. That Holevo’s formulation was a semidefinite
program was independently observed by Eldar, Megretski and Verghese [3].

5One way to think about this is to observe that measurement probabilities are quadratic functions of the amplitudes and
since the density matrix contains all degree 2 terms, it completely determines the measurement statistics.
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the probability of identifying the correct state is the solution to the following semidefinite program:

max tr(
∑

i

piρiΠi)

subject to Πi < 0∑
i

Πi = I,

where the < means that the matrix is positive semidefinite. The dual program is

min tr(X)
subject to X < piρi

X < 0.

Because both the primal and dual are strictly feasible, there is no duality gap and a necessary and sufficient
condition for optimality is that the complementary slackness conditions are satisfied:

(X − piρi)Πi = Πi(X − piρi) = 0

If {Πi}i and X are optimal solutions to the primal, they satisfy the complementary slackness conditions
and by summing over all the conditions and observing that

∑
i Π = I we see that X =

∑
i piρiΠi. So to

prove that {Πi}i is an optimal solution for the primal, all we need to do is show that X =
∑

i piρiΠi is
dual feasible and check the complementary slackness conditions.

2.3 Complex Semidefinite Programming

In general, POVMs may be complex valued. It turns out that our density matrices are real, and so we
can restrict our POVMs to being real. For suppose Π = ΠR + iΠI where ΠR is symmetric and ΠI is
antisymmetric. Then (ρΠI)T = ΠT

I ρ
T = −ΠIρ. So tr(ρΠI) = tr(ΠIρ) = − tr(ρΠI) = 0. Thus the

imaginary part of Π does not contribute towards the measurement and without loss of generality we can
restrict Π to being real.

3 The Abelian Hidden Subgroup Problem

We first give the optimal measurements for the abelian hidden subgroup problem and show that the these
are the measurements implemented by the standard algorithm. We then give a proof of optimality for the
measurements when we have one coset state. The proof extends naturally to k tensored coset states.

3.1 The Optimal Measurement and the Standard Algorithm

Let G be a finite abelian group, and let H ′ be a subgroup chosen uniformly at random from the set of all
subgroups of G. Suppose we are given n coset states, each a superposition over a random coset of H ′. A
set of measurements that maximizes the probability of correctly identifying H ′ is{

Π(n)
H = P⊗n

H −
∑
J>H

Π(n)
J

}
H

,

where PH is the projection onto the subspace spanned by uniform superpositions of cosets of H for one
copy of the coset state.
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To see that the optimal POVM corresponds to measuring in the Fourier basis, recall the standard
algorithm. In the standard algorithm, we measure in the Fourier basis for each copy of the coset state
to obtain a list of characters χ1, . . . , χn, all from H⊥. We take the smallest subgroup of the dual group
Ĝ containing all the χ1, . . . , χn as our estimate of H⊥. This is equivalent to taking the largest subgroup
H of G such that χ1, . . . , χn ∈ H⊥. In other words, we choose the largest subgroup consistent with our
measurement outcomes.

First we examine what happens when we have one coset state. Consider PH , the projection onto
the subspace spanned by uniform superpositions over cosets of H. This subspace is spanned by |χ〉 =∑

x χ(x)|x〉 for all χ ∈ H⊥. Thus
ΠH = PH −

∑
J>H

ΠJ

is the projection onto the subspace spanned by uniform superpositions over cosets of H and not spanned
by uniform superpositions over cosets of any subgroup J containing H. This is equivalent to measuring
in the Fourier basis to obtain χ and then choosing our estimate to be the largest subgroup H such that
χ ∈ H⊥.

When we have n tensored copies of a random coset state,

Π(n)
H = P⊗n

H −
∑
J>H

Π(n)
J

is the projection onto the subspace where each coordinate is in the subspace spanned by uniform superpo-
sitions over cosets of H and no coordinate is in the subspace spanned by uniform superpositions over cosets
of any subgroup J containing H. This is equivalent to measuring in the Fourier basis in each coordinate
to obtain χ1, . . . , χn and taking the largest subgroup H of G such that χ1, . . . , χn ∈ H⊥.

3.2 One coset state

We now show that the measurement is optimal given one coset state.

Theorem 1. Let G be a finite abelian group, and let H ′ be a subgroup chosen uniformly at random from
the set of all subgroups of G. Suppose we are given the coset state that is the superposition over a random
coset of H ′. A set of measurements that maximizes the probability of correctly identifying H ′ is{

ΠH = PH −
∑
J>H

ΠJ

}
H

,

where PH is the projection onto the subspace spanned by uniform superpositions of cosets of H.

We will need the following key lemma:

Lemma 1. Given two subgroups H, J of G we have

(a) PHPJ = P〈H,J〉, where 〈H,J〉 is the smallest subgroup containing H, J ,

(b) PHΠJ = ΠJ if J ≥ H,

(c) PHΠJ = 0 if J � H,

(d) ΠHΠJ = 0 if H 6= J ,

(e) Π2
H = ΠH .
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Proof. (a) Let K = H ∩ J and L = 〈H,J〉. Because G is abelian, K and H are normal in H and L
and so we can write L ∼= K × H/K × L/H. Moreover, by the second isomorphism theorem we have
J/K = J/(H ∩ J) ∼= HJ/H = L/H. Thus L ∼= K ×H/K × J/K and G ∼= K ×H/K × J/K ×G/L. We
can now write

PH =
1
|H|

EK ⊗ EH/K ⊗ IJ/K ⊗ IG/L

PJ =
1
|J |

EK ⊗ IH/K ⊗ EJ/K ⊗ IG/L,

where EA is the |A| × |A| all ones matrix and IB is the |B| × |B| identity matrix. Thus

PHPJ =
(

1
|H|

EK ⊗ EH/K ⊗ IJ/K ⊗ IG/L

)(
1
|J |

EK ⊗ IH/K ⊗ EJ/K ⊗ IG/L

)
=

|K|
|H||J |

EK ⊗ EH/K ⊗ EJ/K ⊗ IG/L =
1
|L|

EL ⊗ IG/L = PL,

where we have used the fact that E2
K = |K|EK .

(b) Suppose H ≤ J . Observe that ΠJ is a linear combination of PJ and elements of {ΠJ ′}J ′>J and
thus a linear combination of {PJ ′}J ′≥J . Since J ′ ≥ J ≥ H, PHPJ ′ = PJ ′ and so PHΠJ = ΠJ .

(c) Suppose J � H. We use induction on J . Fix H and suppose that PHΠJ ′ = 0 for all J ′ > J , J ′ � H.
The base case follows by observing that if there is no such J ′ then (c) is true by default. Then

PHΠJ = PH

(
PJ −

∑
J ′>J

ΠJ ′

)
= PHPJ −

∑
J ′>J

PHΠJ ′

= P〈H,J〉 −
∑

J ′≥〈H,J〉

ΠJ ′ = P〈H,J〉 − P〈H,J〉 = 0,

where the third line comes from our inductive hypothesis and the fourth line from the definition of Π〈H,J〉.
(d) Suppose J 6= H. Because ΠH , PH are symmetric we have PHΠH = ΠH = ΠT

H = (PHΠH)T =
ΠT

HP
T
H = ΠHPH . Thus

ΠHΠJ = ΠHPHPJΠJ = ΠHP〈H,J〉ΠJ = 0,

because J 6= H implies that we cannot have both H,J ≥ 〈H,J〉.
(e)

Π2
H =

(
PH −

∑
J>H

ΠJ

)
ΠH = ΠH − 0 = ΠH .

We now prove optimality of the measurement.

Proof (Theorem 1). Let ρH be the uniform mixed state over uniform superpositions of cosets of H, observe
that ρH = |H|

|G|PH . Let pH be the probability of choosing subgroupH (here uniform) andX =
∑

H pHρHΠH .
Then we need to show that ∑

H

ΠH = I (1)

ΠH < 0 (2)
X − pHρH < 0 (3)

(X − pHρH)ΠH = ΠH(X − pHρH) = 0. (4)
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(1) is trivially satisfied because I = P{0} =
∑

H>{0} ΠH =
∑

H ΠH .
From Lemma 1(e) we see that ΠH is a projection and thus its eigenvalues are either 0 or 1. This gives

us (2).
Now,

X =
∑
H

pHρHΠH =
∑
H

pH
|H|
|G|

PHΠH =
∑
H

pH
|H|
|G|

ΠH .

Then if pH ≤ |J |
|H|pJ for all J > H we have

X − pHρH =
∑
J

pJ
|J |
|G|

ΠJ − pH
|H|
|G|

PH <
∑
J≥H

pH
|H|
|G|

ΠJ − pH
|H|
|G|

PH = pH
|H|
|G|

(PH − PH) = 0.

If the H is chosen uniformly at random then pJ is constant and we have pH ≤ |J |
|H|pJ for all J > H. This

gives (3).
To prove (4) we use Lemma 1(d) to show that

(X − pHρH)ΠH =

(∑
J

pJ
|J |
|G|

ΠJ − pH
|H|
|G|

PH

)
ΠH =

∑
J 6=H

pJ
|J |
|G|

ΠJΠH + pH
|H|
|G|

(Π2
H −ΠH) = 0.

Similarly, ΠH(X − pHρH) = 0.

3.3 n copies of coset state

The result for one coset state extends naturally to n tensored copies of the coset state.

Theorem 2. Let G be a finite abelian group, and let H ′ be a subgroup chosen uniformly at random from
the set of all subgroups of G. Suppose we are given n coset states, each a superposition over a random
coset of H ′. A set of measurements that maximizes the probability of correctly identifying H ′ is{

Π(n)
H = P⊗n

H −
∑
J>H

Π(n)
J

}
H

,

where PH is the projection onto the subspace spanned by uniform superpositions of cosets of H for one
copy.

Proof. The proof is analogous to the proof for the case where we had one copy of the coset state. The
proof for Lemma 1 still works when we replace PH with P⊗n

H . The proof for Theorem 1 becomes a proof

for Theorem 2 when we replace ρH = |H|
|G|PH with ρ⊗n

H =
(
|H|
|G|

)n
P⊗n

H .

4 The Nonabelian Hidden Subgroup Problem

The proof of optimality for the abelian hidden subgroup problem does not generalize to the nonabelian case.
The point at which it breaks down is Lemma 1(a), where the proof relies on the fact that HJ = 〈H,J〉.
This is true when one of H,J is normal (which is always true if G is abelian) but in general is false if G is
nonabelian.

We give the optimal measurement for the hidden subgroup problem over the dihedral group when given
one coset state. This measurement cannot be expressed in terms of the Fourier basis.
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4.1 Optimal Measurements for the Dihedral Group

For simplicity, we only consider the dihedral group D2p where p is prime. The subgroups of D2p are

G = D2p = {1, r, . . . , rp−1, s, sr, . . . , srp−1},
C = {1, r, . . . , rp−1},
Rl = {1, srl}, for l = 0, . . . , p− 1,
E = {1}.

Given one random coset state, it can be shown that the optimal measurements is

ΠG = PG,

ΠC = PC −ΠG,

ΠRl
=

2
p
(PRl

−ΠG), for l = 0, . . . , p− 1,

ΠE = 0.

4.2 Optimal Measurements not in Fourier Basis

For D2p, the Fourier basis is not a refinement of the optimal POVM, even if we allow a change of basis
through unitary equivalence. This is shown by writing down the POVM corresponding to the Fourier
transform (with variables that represent the unitary change of basis) and then showing that no linear
combination of these will yield the ΠRl

s.
We show the details of the proof for D6. Analogous arguments work for D2p. The Fourier basis in

nonabelian groups is given by the irreducible representations of the group. For D6 = {1, r, r2, s, sr, sr2}
there are two 1-dimensional and one 2-dimensional irreducible representations. The 1-dimensional repre-
sentations are the trivial representation θ1(·) and the representation θ2(·) given by

θ2(rl) = 1, θ2(srl) = −1.

The 2-dimensional irreducible representation ρ is given by

ρ(rl) =
(
ωl 0
0 ω−l

)
, ρ(srl) =

(
0 ω−l

ωl 0

)
,

where ω = e2πi/3 is a cube root of unity. The choice of basis for the higher dimensional representations
is not unique. Given a unitary matrix U , UρU † is also an irreducible representation. In fact, all unitary
irreducible representations can be written in this form. Write U in the form(

a b
b∗ −a∗

)
,

where |a|2 + |b|2 = 1. Then we have

U †ρ(rl)U =
(
a∗aωl + b∗bω−l a∗b(ωl − ω−l)
ab∗(ωl − ω−l) a∗aω−l + b∗bωl

)
and

U †ρ(srl)U =
(
abωl + a∗b∗ω−l −a∗2ω−l + b2ωl

−a2ωl + b∗2ω−l −abωl − a∗b∗ω−l

)
.
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So measuring in the Fourier basis is equivalent to projecting into the subspace spanned by each of

v1 =
(
1 1 1 1 1 1

)
/
√

6,

v2 =
(
1 1 1 −1 −1 −1

)
/
√

6,

v11 =
(
1 a∗aω + b∗bω−1 a∗aω2 + b∗bω−2 ab+ a∗b∗ abω + a∗b∗ω−1 abω2 + a∗b∗ω−2

)
/
√

3,

v22 =
(
1 a∗aω−1 + b∗bω a∗aω−2 + b∗bω2 −ab− a∗b∗ −abω − a∗b∗ω−1 −abω2 − a∗b∗ω−2

)
/
√

3,

v12 =
(
0 a∗b(ω − ω−1) a∗b(ω2 − ω−2) −a∗2 + b2 −a∗2ω−1 + b2ω −a∗2ω−2 + b2ω2

)
/
√

3,

v21 =
(
0 ab∗(ω − ω−1) ab∗(ω2 − ω−2) −a2 + b∗2 −a2ω + b∗2ω−1 −a2ω2 + b∗2ω−2

)
/
√

3.

We now show that ΠR0 , ΠR1 , ΠR2 cannot be obtained from the Fourier basis, that is, they cannot be
expressed as a positive linear combination of v†1v1, v

†
2v2, v

†
11v11, v

†
22v22, v

†
12v12 and v†21v21. Suppose that

they can be expressed in this form. The first row of each of ΠR0 , ΠR1 , ΠR2 is(
+1/3 −1/6 −1/6 +1/3 −1/6 −1/6

)
,(

+1/3 −1/6 −1/6 −1/6 +1/3 −1/6
)
,(

+1/3 −1/6 −1/6 −1/6 −1/6 +1/3
)

respectively. This is orthogonal to the first row of each of v†1v1, v
†
2v2, v

†
12v12 and v†21v21, so the first row of

each of ΠR0 , ΠR1 , ΠR2 must be a positive linear combination of the first row of each of v†11v11 and v†22v22
(note that the first row of v†11v11 and v†22v22 is a multiple of v11 and v22).

Now consider the restriction to the last 3 coordinates of the first row. In the last 3 coordinates of
v11 and v22, one is the negative of the other, and thus they span a 1-dimensional subspace. The last 3
coordinates of the first row of ΠR0 , ΠR1 , ΠR2 span a 2-dimensional subspace. Thus the first row of each
of ΠR0 , ΠR1 , ΠR2 cannot be expressed as a positive linear combination of the first row of each of v†11v11
and v†22v22. This shows that ΠR0 , ΠR1 , ΠR2 cannot be expressed in terms of the Fourier basis, even up to
unitary equivalence.

This argument can easily be extended to D2p. The only difference is that now we consider the last
p coordinates of the first row of ΠRl

. These span a subspace of dimension p − 1. The corresponding
coordinates in the Fourier basis span a subspace of dimension (p − 1)/2 and so the optimal basis cannot
be expressed in terms of the Fourier basis.

5 Further Work

The most pressing open question is: What are the optimal measurements for the dihedral group when we
are given n copies of the coset state and can we implement these measurements?

The optimal measurements for the dihedral group with one coset state were discovered by numerically
solving the semidefinite program and guessing the analytic form of the solutions. As yet we have been
unable to extend this method to more than one copy of the coset state because the size of the problems
rapidly exceeded the resources of the computers available to us. It may be possible to obtain additional
numerical results by using computers with more memory or by finding ways to reformulate the semidefinite
program to reduce the computational requirements.

The techniques used to prove optimality of the standard algorithm for the hidden subgroup problem
may be applicable to proving optimality of other quantum algorithms. The idea of using semidefinite
programming to find candidate bases is also generic and may be useful in other contexts.
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